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ABSTRACT

This paper presents an application of an artificial neural network called a self-organizing map (SOM) or Kohonen map in the context of GIS. The SOM is an unsupervised approach for reducing the dimensionality of an n-dimensional dataset while preserving major topological relationships existing in the high-dimensional space (Kohonen 1982, 2001). The main goal of the GIS-based visualization module is to fill the need for generalized visualization tools that facilitate the display of a trained SOM and the mapping of other high-dimensional data onto a SOM within a standard GIS environment. Among the capabilities provided by the module is the conversion of a SOM from its standard codebook format into a Shapefile, facilitating the integration of a SOM into a GIS, and allowing the leveraging of existing users’ skills and GIS tools. The paper discusses the methodology and implementation of the module, the use and significance of specific features, and lists some areas requiring further development. 

1. INTRODUCTION

In recent years, the nature of datasets has fundamentally changed from a few observations of a limited number of variables to many observations of a large number of variables. Information visualization is essential to the understanding of large high-dimensional datasets. However, it is difficult to perceive high-dimensional visualizations and therefore dimensionality reduction is required. The challenge then is in utilizing a model that effectively reduces the dimensions of the data while preserving its structure. One such model is the self-organizing map (SOM) (Kohonen 2001). 

SOMs consist of a network of units that have three functions: matching, communicating, and learning. Through the iterative application of these functions they tend to preserve major topological structures of n-dimensional space in two-dimensional space. The matching function returns the Euclidean distance between one observation in the data and one unit in the network based on their attributes. The communication function determines the subset of the network, or subnet, over which one unit has influence. The learning function determines how values within a subnet will change. During training a SOM molds itself in a manner that tends to be consistent with the topology of the training dataset. This training requires that for each observation within a dataset, SOMs search for the best matching unit (BMU), determine the BMU’s subnet, and change values within the subnet in accordance with the learning function’s parameters. After training, it is possible to visualize the SOM itself as well as corresponding data. 
The visualization of a SOM, as well as related data, has traditionally been a tedious or expensive process, often involving the conversion of data between several different formats and requiring user intervention at multiple levels. There are commercial solutions specifically developed for visualizing SOMs. However, in addition to monetary cost they also require an investment of time to learn how to use them. One alternative approach for visualizing SOMs is the development of a visualization module that is supported across many platforms and utilizes an existing file format that can be readily used in many different visualization packages. We developed such a module, which leverages both existing users’ skills developed within other packages and the visual and analytical functionality of GIS software for SOMs. 

2. VISUALIZING SELF-ORGANIZING MAPS

Among visualizations derived from a SOM one can distinguish two main categories: (1) visualization of the SOM itself, as is the case with component planes, and (2) visualization of data mapped onto the SOM. A component plane is a collection of individual values from all the units in the network for one particular variable. Their visualization demonstrates how a particular variable contributes to locations within the SOM. Meanwhile, mapping data onto a SOM shows where the weights of all variables place each data record within a SOM. The various SOM visualization methods known today allow for the examination of structure within a SOM as well as how that structure affects data mapped onto a SOM.
2.1. Supplementing SOM_PAK

SOM_PAK (Kohonen et al. 1996) is a public domain software package that provides many functions including the ability to create, train, and store SOMs, and functions as the computational core of many applications of SOM. The development of SOM_PAK included the creation of a file format called a codebook to store SOMs. Codebooks contain all the information needed to recreate a SOM. The information within a codebook is sufficient for generating the geometry of a SOM for visualization. However, this text format is not readily convenient for visualization. This is where our module supplements the functionality of SOM_PAK, and all other implementations of SOMs that use codebooks, by calculating the two-dimensional geometry of a SOM and storing that geometry and attributes in a standard spatial file format called a Shapefile. Shapefiles use a well-documented format, and have been widely supported by Geographic Information Systems (GIS) software, as well as many other packages. The module (Figure 1) introduced here was specifically designed to supplement SOM_PAK by enabling efficient visualization through a standard interchange format. 
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	Figure 1: The module contents being discussed


2.2. Input Data: Codebooks and BMUs

In order to understand the advantages of this module it is necessary to further explain the codebook format, the related BMU file format, and Shapefiles. Simply put, codebooks store the SOM itself, BMU files contain data mapped onto the SOM, and Shapefiles can store either in a geometric format. What follows is a more complete explanation of the three file types.

A codebook file (Figure 2) stores a SOM in a space-delimited text format. The first line of the codebook contains five values. The first value is the number of attribute dimensions of the SOM. The second value is a string specifying the topology type, or pattern of the network. The third and forth values are the number of units in the x and y dimension respectively. The fifth value is the neighborhood or communication type. These five values describe the distribution and form of the network’s units, but do not indicate the values of any units, which are contained within the subsequent lines of the file. There is a subsequent line for each unit in the network beginning in row order. These lines contain the values of each attribute dimension for one unit. The codebook header combined with the subsequent lines contains all the data needed to reconstruct a SOM.

The BMU file (Figure 3) also uses a space-delimited text format, and contains a file header. Although the file header is in an identical format to the codebook file, the subsequent lines are significantly different. Each line begins with two integers that index the unit in the SOM that was the BMU for a data observation. Following the unit index is the Euclidean distance, a measurement of the closeness of the BMU to the data observation. The BMU file contains all the data needed to map specific observations onto the SOM.

	4 hexa 20 20 gaussian

0.00575048 0.350507 0.99861 0.00410555

0.00717731 0.370756 0.996484 0.00491019

0.0107895 0.398342 0.988665 0.00968149

0.0152111 0.415806 0.975664 0.0190069


Figure 2: A selection from a codebook file showing the file header and values of four units
	3 hexa 20 20 gaussian

5 6 0.0996437 

16 19 0.176247 

12 16 0.033888 

2 7 0.0851237


Figure 3: A BMU file showing the file header, unit indices, and closeness for data
2.3. Output Data: Shapefiles

The last file type of concern to our module is the Shapefile, which it is by far the most complex. A Shapefile actually consists of three corresponding files stored in a highly organized binary format. The first file is known as the main file (.shp) and contains geometric data; it begins with a header that details the spatial extent and geometric type of objects contained within the file, followed by the object’s coordinates and other spatial details. The second file is the index file (.shx) and contains an index to the objects within the main file. The last file is the dBase file (.dbf), which contains all the attribute data for the geometric objects. These three files compose a Shapefile, and are able to completely store both the geometric and non-geometric aspects contained in SOMs and BMU files. 

Converting codebooks and BMU files to Shapefiles is a three step process of parsing the input file, calculating coordinates, and writing the new Shapefile. Parsing begins by reading in the values from the header line. These values are then used in the second step as the parameters needed to calculate coordinates. The coordinates for the units are assumed to be one unit apart and can be calculated by iterating through a consecutive sequence of coordinates. Once the coordinates are calculated, the Shapefile can be written. Thus SOMs are converted to the Shapefile format and become usable in a standard GIS environment.

3. EXPERIMENT ON DEMOGRAPHIC DATA

A GIS-based visualization of data obtained from a report (Hobbs and Stoops 2002) highlighting the history of the United States census over the last century demonstrates the utility of this module for integrating SOMs with GIS. The data consist of population percentages for gender, age, and race variables for the coterminous states and Washington D.C., which were then normalized to create relative values within each variable. Gender consists of two variables, male and female, while age consists of three variables, age below 15, age 15 to 64, and age 65 and above. Race is measured with four variables, American Indian and Alaska Native, Asian and Pacific Islander, Black, and White. These nine variables were measured for 49 entities (i.e., 48 states and Washington D.C.), during ten temporal periods, one for each decadal census held during the past century. 
The SOM consists of 5,625 (75x75) neurons arranged in a hexagonal topology, which went through 100,000 training cycles, with an initial neighborhood size of 75, and an initial alpha of 0.5. Visualizing the SOM can illustrate many of its aspects and suggest tendencies in the data. For example, mapping data onto the SOM (Figure 4) shows how the data are dispersed by the SOM and, consequently, that the SOM is able to differentiate among data. Visualizing the “age 65 and above” component plane in the SOM (Figure 5) demonstrates that data best matched with high values for “age 65 and above” have a tendency to be drawn towards the upper left corner of the SOM. The examination of all the component planes in conjunction with the mapping of data onto the SOM can visually suggest which variables dominate the SOM’s distinction of data, which may actually reflect primary characteristics of that data. 
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	Figure 4: The training data mapped as points onto a SOM trained with multitemporal population data for the U.S. Dispersion indicates use of the full extent of the SOM.
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	Figure 5: The “age 65 and above” component plane from a SOM trained with multitemporal population data for the U.S. Darker shading corresponds to higher values.


4. CONCLUSIONS AND OUTLOOK
The conversion of codebook files to Shapefiles provides the advantage of explicitly storing both spatial and non-spatial data and, consequently, allows for the application of existing GIS software and user skills. The module fulfills these basic needs for the integration of SOMs into GIS, allowing for further development of SOM tools. Future visualization components will include support for linking and brushing, such as being able simultaneously to select geographic entities and their corresponding entities in SOMs, and data line generation (Figure 6) representing trajectories through attribute space (Skupin and Hagelman 2005). Future computational components will include native creation and training of SOMs without the SOM_PAK binaries, and the incorporation of statistical tools to measure distortions and significance.
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	Figure 6: Individual states mapped as multitemporal trajectories through attribute space. 
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